EE 505

Lecture 4

Quantization Noise
Spectral Characterization



CORRECTION from Last Lecture

Differential Nonlinearity (DAC)

Nonideal DAC

4 Lout
Xrer|[—

Increment at code 4
Lour(k)-Lour(k-1)

P 1] :
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Theorem: The INL, of a DAC (when corrected for gain error and offset) can be
obtained from the DNL by the expli(ession

INLy =>" DNL(i)
i=1
Caution: Be careful about using this theorem to measure the INL since errors
in DNL measurement (or simulation) can accumulate

Corollary: The DNL of a DAC (when corrected for gain error and offset) can be
expressed as
DNL(k)=INL,-INL,



Commercial Data Converter Update (Jan 25, 2023)

Analog Devices

Flash 7
MS 2
Pipe 566
SAR 863
Delta Sigma 255
Total 1693
Texas
Instruments
Flash 3
Two-
Step 6
Folding 64
Pipe 296
SAR 428
Delta Sigma 195
Not Specified 2
Total 994

Note: Based upon reported part numbers. ADI lists some parts in multiple
performance categories so some are listed more than once. Both have
variants of one component listed with unique part numbers



Linearity Measurements (testing)

Consider ADC

Vin(t)

DUT

*

Xiout

Linearity testing often based upon code density testing

Code density testing:
A Vi(t)

Ramp or multiple ramps often used for excitation
Linearity of test signal is critical (typically 3 or 4 bits more linear than DUT)



Linearity Measurements (testing)
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* First and last bins generally have many extra counts (and thus no useful information)
* Typically average 16 or 32 hits per code



Linearity Measurements (testing)

XouT: f:

Code density testing:

0 i=0,N-2

k=1 _ 1<i<N-3




Linearity Measurements (testing)

Code density testing: Xout. & ) )
0 i=0,N-2 -
DN|_i=Ci_'C INLF{ZIJCK}-K_)
c k=1 1<i<N-3
= <i<
DNL = max {DNLj|} INL =max {INLj|}
1<i<N-2 1<i<N-3

« Code Density Measurements are Indirect Measurements of the INL and DNL
« Can give very wrong information under some nonmonotone missing code
scenarios

« Often use an average of 16 or 32 samples per code

« Measurement noise often 1 Isb or larger but averages out

« Sometimes use good sinusoidal waveform but must correct code density for
this distinction

* Full code-density testing is costly for high-resolution low-speed data
converters because of data acquisition costs

 Reduced code testing using servo methods is often a less costly alternative
but may miss some errors



Performance Characterization of Data Converters

« Static characteristics
- Resolution
- Least Significant Bit (LSB)
- Offset and Gain Errors
— Absolute Accuracy
— Relative Accuracy
\2 Integral Nonlinearity (INL)
\'2 Differential Nonlinearity (DNL)
\'E Monotonicity (DAC)
N - Missing Codes (ADC)
— Quantization Noise
— Low-f Spurious Free Dynamic Range (SFDR)
— Low-f Total Harmonic Distortion (THD)
— Effective Number of Bits (ENOB)
— Power Dissipation



Quantization Noise

 DACs and ADCs generally quantize both
amplitude and time

* |f converting a continuous-time signal
(ADC) or generating a desired continuous-
time signal (DAC) these quantizations
cause a difference in time and amplitude
from the desired signal

* First a few comments about Noise



What is Noise in a data converter?

Noise is a term applied to some nonideal effects of a data converter

Precise definition of noise is probably not useful

Some differences in views about what nonideal characteristics of a data
converter should be referred to as noise

Types of noise:

« Random perturbations in V or | due to movement of electrons in
electronic circuits

* Interfering signals generated by other systems
* Interfering signals generated by a circuit or system itself

« Error signals associated with imperfect signal processing algorithms

or circuits _ Quantization noise
— Sample Jitter
— Harmonic Distortion



Noise

All of these types of noise are present in data converters and are
of concern when designing most data converters

Can not eliminate any of these noise types but with careful design can
manage their effects to certain levels

Noise (in particular the random noise) is often the major factor limiting
the ultimate performance potential of many if not most data converters



Noise

Types of noise:

Perturbations in V or | due to movement of electrons in electronic circuits

Interfering signals generated by other systems

Interfering signals generated by a circuit or system itself

Error signals associated with imperfect signal processing algorithms
or circuits

— Quantization noise
— Sample Jitter
— Harmonic Distortion

Quantization noise is a significant
component of this noise in ADCs and
DACs and is present even if the ADC
or DAC is ideal

Only the first type is associated with random variations but from a performance
limitation viewpoint, all



Quantlzatlon Noise in ADC

(same concepts apply to DACs)

Consider an Ideal ADC with first transition point at 0.5X, g5

xlN—» ADC T> Xout

AREF
If the input is a low frequency sawtooth waveform of period T that goes

from 0 to Xrgg, the error signal in the time domain will be:
s €Q

TN A s\ N
s VNV NN NN

where T,=T/2"

This time-domain waveform (after dc offset is removed) is termed the
Quantization Noise for the ADC with a sawtooth (or triangular) input




Quantization Noise in ADC

A €Q

TN A s\ N
s VNV NN NN

For large n, this periodic waveform “behaves” much like a random noise source
that is uncorrelated with the input and can be characterized by its RMS value
which can be obtained by integrating over any interval of length T, For
notational convenience, shift the waveform to the left by T,/2 units

| T2

ErMs =,|= [ o (t)dt
T _ 1/
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Quantization Noise in ADC
A

+ .9 Xiss
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'.5 xLSB 7]

1 T2 ,
E = |— t)dt
RMS T, _T{/ng (2)

In this interval, 4 can be expressed as



Quantization Noise in ADC

1 T2 ,
E = |— t)dt
RMS T, —T{/ng (2)

T,/2 2
E RMS = i 1 -‘%LSB tzdl‘
Torpl T

3 T1/2
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E rRMs =X sB 33
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Quantization Noise in ADC

X
E Rvs = \/L%B

The signal to quantization noise ratio (SNR) can now be determined.
Since the input signal is a sawtooth waveform of period T and amplitude
Xrep it follows by the same analysis that it has an RMS value of

Thus the SNR is given by
X X
SNR = RMS _ #RMS _on
Ervs ZiLsB

or, in dB,
SNRgg =20(nelog2)=6.02n

Note: dB subscript often neglected when not concerned about confusion



Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes
from O to Xer centered at Xep/27?

SNR =20(nelog2)=6.02n



Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes
from O to Xer centered at Xep/27?
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Time and amplitude quantization points



Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes

from O to Xer centered at Xep/27?
¢ TN

XREF
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Time and Amplitude Quantized Waveform

Y=




Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes
from O to Xrer centered at Xpep/27

e
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Error waveform




Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes
frogg P to Xree centered at Xge/27?

1/ \\ // e
NN

« Appears to be highly uncorrelated with input even though deterministic

« Mathematical expression for €5 very messy

« Excursions exceed X g5 (but will be smaller and bounded by + X, q5/2 for
lower frequency signal/frequency clock ratios)

» For lower frequency inputs and higher resolution, at any time, errors are
approximately uniformly distributed between —X, sg/2 and X q5/2

+ Analytical form for eq4zys €ssentially impossible to obtain from £4(t)



Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes
from O to Xer centered at Xep/27?

For low fg s/f;, ratios, bounded by +XLB and at any point in time,
behaves almost as if a uniformly distributed random variable

£Q ~ U[-O'5XLSB’ O'5XLSB]



Quantization Noise in ADC

Recall:

If the random variable f is uniformly distributed in the interval [A,B]
f: UJA,B] then the mean and standard deviation of f are given by

_A+B 5 =BA
Mf= 5 f A2
Theorem: If n(t) is a random process, then for large T,

t+T
1™
VRMS=\/T | n®(t)dt =\oq+u;



Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes
from O to Xer centered at Xep/27?

gQ ~ U[-O'5XLSB’ O'5XLSB]

_A+B _B-A_XsB
Heq ™5 =0 AT 2

X
VRMS = GgQ=—\'/‘1S—ZB

Note this is the same RMS noise that was present with a triangular input



Quantization Noise in ADC

How does the SNR change if the input is a sinusoid that goes
from O to Xer centered at Xep/27?

Finally, in db,

SNRyg = 20Iog(2n 3)=6.02 n+1.76



ENOB based upon Quantization Noise

SNR=6.02n + 1.76
Solving for n, obtain

SNR4g-1.76
6.02

Note: could have used the SNR for a triangle input and would have
obtained the expression

ENOB =

ENOB =

SNRyg
6.02

But the earlier expression is more widely used when specifying the ENOB
based upon the noise level present in a data converter



ENOB based upon Quantization Noise

For very low resolution levels, the assumption that the quantization noise is
uncorrelated with the signal is not valid and the ENOB expression will cause

a modest error

from van de Plassche (p13) SNR¢orr = (2”-2+

Res (n) | SNRg, SNR

1 3.86 7.78

2 12.06 13.8

3 19.0 19.82

4 25.44 25 84

O 31.66 31.86

6 37.79 37.88

Table values in dB 8 49.90 49.92
10 61.95 61.96

Almost no difference forn = 3

N2

SNR =6.02 n +1.76



Quantization Noise

Effects of quantization noise can be very significant, even at high resolution,
when signals are not of maximum magnitude

4 TN
XREF +
1
T 81N
Xrer +
/“\/‘\/‘\/‘
L

Quantization noise remains constant but signal level is reduced

The desire to use a data converter at a small fraction of full range
is one of the major reasons high resolution is required in many applications



Quantization Noise

Effects of quantization noise can be very significant, even at high resolution,
when signals are not of maximum magnitude
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Quantization Noise

Example: If a 14-bit audio output is derived from a DAC designed for providing
an output of 100W but the normal listening level is at 50mW, what is the SNR
due to quantization noise at maximum output and at the normal listening level?
What is the ENOB of the audio system when operating at 50mW?

At 100W output, SNR=6.02n+1.76 = 90.6dB

V£ _ v

V2
50mW V1 =
44 .7

—=100W
R R

At 50mW output, SNR reduced by 33dB to 57.6dB

SNRyg-1.76 _ 57.6-1.76 _
6.02 6.02

Note the dramatic reduction in the effective resolution of the DAC when operated
at only a small fraction of full-scale.

ENOB =



ENOB Summary

Resolution: | N
O
ENOB = 2J10AcT _jog N, .-
log,,2
INL:
ENOB = ng-log, (v)-1 Nk specified res, v INL in LSB
ENOB=-log, (INL . )-1 INLger  INL rel to Xger
DNL:
HW problem
Quantization noise: SNR rel to triangle/sawtooth
ENOB = ds
6.02
ENOB = SNRgp-1.76 rel to sinusoid
6.02
Most widely used for static characteristics

Additional ENOB will be introduced when discussing dynamic characteristics



Performance Characterization of Data Converters

« Static characteristics
- Resolution
- Least Significant Bit (LSB)
- Offset and Gain Errors
— Absolute Accuracy
— Relative Accuracy
\ 2 Integral Nonlinearity (INL)
\'2 Differential Nonlinearity (DNL)
\'E Monotonicity (DAC)
N Missing Codes (ADC)
A\ Quantization Noise
— Low-f Spurious Free Dynamic Range (SFDR)
— Low-f Total Harmonic Distortion (THD)
— Effective Number of Bits (ENOB)
— Power Dissipation



Absolute Accuracy

Absolute Accuracy is the difference between the actual output and the ideal
or desired output of a data converter

The ideal or desired output is in reference to an absolute standard

(often maintained by the National Institute of Standards and Technology —
NIST) ( renamed from National Bureau of Standards in 1988) and could be
volts, amps, time, weight, distance, or one of a large number of other
physical quantities)

Absolute accuracy provides no tolerance to offset errors, gain errors,
nonlinearity errors, quantization errors, frequency rolloff, or noise

In many applications, absolute accuracy is not of a major concern

Absolute accuracy generally dominated by the nonidealities of the reference (a
data converter is a ratio-metric device so no fundamental limit on ratio portion)

but ... scales, meters, etc. may be more concerned about absolute
accuracy than any other parameter



Relative Accuracy

In the context of data converters, pseudo-static Relative Accuracy is the
difference between the actual output and an appropriate fit-line to overall
output of the data converter

INL is often used as a measure of the relative accuracy

In many, if not most, applications, relative accuracy is of much more
concern than absolute accuracy

Some architectures with good relative accuracy will have very small
deviations in the outputs for closely-spaced inputs whereas others
may have relatively large deviations in outputs for closely-spaced inputs

DNL provides some measure of how outputs for closely-spaced inputs compare

A Xour A Xout

XRerF ] -7




Performance Characterization of Data Converters

« Static characteristics
- Resolution
- Least Significant Bit (LSB)
- Offset and Gain Errors
v— Absolute Accuracy
A Relative Accuracy
\2 Integral Nonlinearity (INL)
\'2 Differential Nonlinearity (DNL)
\'E Monotonicity (DAC)
N Missing Codes (ADC)
A\ Quantization Noise
— Low-f Spurious Free Dynamic Range (SFDR)
— Low-f Total Harmonic Distortion (THD)
— Effective Number of Bits (ENOB)
— Power Dissipation



Limitations of INL & DNL in Characterizing Linearity

* INL is a key parameter that is attempting to characterize the
overall linearity of a DAC !

* INL is a key parameter that is attempting to characterize the
overall linearity of an ADC !

 DNL is a key parameter that is attempts to characterize the
local linearity of a DAC !

 DNL is a key parameter that is attempts to characterize the
local linearity of an ADC !

Are INL and DNL effective at characterizing
the linearity of a data converter?



Limitations of INL & DNL in Characterizing Linearity

Consider the following 4 transfer characteristics, all of which have the same INL

A Xour

Xrer T _




Limitations of INL & DNL in Characterizing Linearity
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Limitations of INL & DNL in Characterizing Linearity

A

Xrer T

XOUT

/

Xrer T

v

XREF

A

XReF ]

A Xout

A

XReF ]

v

XREF

Although same INL, dramatic difference in performance particularly when
inputs are sinusoidal-type excitations

INL also gives little indication of how performance degrades at higher frequencies

Spectral Analysis often used as an alternative (and often more useful in many
applications) linearity measure for data converters



Linearity Issues

* INL is often not adequate for predicting the
linearity performance of a data converter

 Distortion (or lack thereof) is of major
concern in many applications

* Distortion is generally characterized in
terms of the harmonics that may appear in
a waveform

Spectral Analysis often used as an alternative (and often
more useful in many applications) linearity measure for
data converters



Performance Characterization of Data Converters

« Static characteristics
v— Resolution
- Least Significant Bit (LSB)
- Offset and Gain Errors
v— Absolute Accuracy
A Relative Accuracy
\2 Integral Nonlinearity (INL)
\'2 Differential Nonlinearity (DNL)
\'E Monotonicity (DAC)
N Missing Codes (ADC)
A\ Quantization Noise
Spectral ‘I: — Low-f Spurious Free Dynamic Range (SFDR)
— Low-f Total Harmonic Distortion (THD)
— Effective Number of Bits (ENOB)
— Power Dissipation

Characterization



Spectral Analysis

T —
If f(t) is periodic
fity =A,+) Asin(kot+0,)
k=1

alternately

f(t) :A0+ZOO:aksin(k(ot)Jribkcos(k(ot) ®O=—
k=1 k=1

A= \/a12< +b12<

Termed the Fourier Series Representation of f(t)



Spectral Analysis

X|N(t) Nonlinear >§OUT(t)

System (weakly)

A 4

Often the system of interest is ideally linear but practically it is weakly
nonlinear.

Often the input is nearly periodic and often sinusoidal and in latter case
desired output is also sinusoidal

Weak nonlinearity will cause harmonic distortion (often just termed
distortion) of signal as it is propagated through the system

Spectral analysis often used to characterize effects of the weak
nonlinearity



Spectral Analysis

X|N(t) Nonlinear >§OUT(t)

System (weakly)

A 4

Distortion Types:
Frequency Distortion
Nonlinear Distortion (alt. harmonic distortion)

Frequency Distortion: Amplitude and phase of system is altered but
output is linearly related to input

Nonlinear Distortion: System is not linear, frequency components
usually appear in the output that are not present in the input

Spectral Analysis is the characterization of a system with a periodic input with
the Fourier series relationships between the input and output waveforms



Spectral Analysis

Xin(t) | Nonlinear XOUT(t)
| System '

If X, (t)=X_sin(cot+6)
Xopr(® = Ay + Y Asin(kot+0,)
k=1

. 0 00
All spectral performance metrics depend upon the sequences <Ak> <6’k>
(index sequence, not time sequence) k=0 k=1

Typical spectral performance metrics of interest: SNDR, SDR, THD, SFDR, IMOD

Alternately

Xour (1) = Ay + ;ak sin(kaot ) +;bk cos(kat) A = a2+ b 9, = tan"' (ﬂ]

a,



Distortion Analysis

A 4

1 2 3 4 5 6 ]
« Often termed the DFT coefficients (will show later)
« Spectral lines, not a continuous function

A1 is termed the fundamental (when input is sinusoid or periodic)
Ak Is termed the kth harmonic (when input is sinusoid or periodic)



Distortion Analysis

|Ak| . <A k >::o

Often ideal response will have only fundamental present and all
remaining spectral terms will vanish



Distortion Analysis

a) 4

For a low distortion signal, the 2"d and higher harmonics are generally
much smaller than the fundamental

The magnitude of the harmonics generally decrease rapidly with k for low
distortion signals



Distortion Analysis

a) 4

1 | S T

| 1 2 3 4 ) 6

Assume f(t) is periodic with period T :;

f(t) is band-limited to frequency 21 f ky if A =0 for all k>k,

where <Ak >: , are the Fourier series coefficients of f(t)



Distortion Analysis

Total Harmonic Distortion, THD

THD — RMS voltage m harmonics

RMS voltage of fundamenta 1




Distortion Analysis

Spurious Free Dynamic Range, SFDR

The SFDR is the difference between the fundamental and the largest harmonic

A 4
' %
SFDR
'
T l T T Y O O |
| 1 2 3 4 5 6 K

SFDR and THD are usually determined by either the second or third harmonic



Distortion Analysis

Theorem: In a fully differential symmetric circuit, all even-order terms
are absent in the Taylor’s series output for symmetric differential
sinusoidal excitations !

+ VO1 +
V|D ““““““““““““ VOD
i Voo -~
Proof: Expanding in a Taylor’s series around V,;=0, we obtain

VO1 = f( ) Zh \/IlE) VOD=VO1_V02:ihk(le)k_th(-V
k=0

o Vop=
Vo _f th k -
k=0 VOD=kZ K (VID)k (- ) ( 'D)}

When k is even, the corresponding term in [ ] vanishes I
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Stay Safe and Stay Healthy !







